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Abstract 

Eliminating the N atomic position vectors rj, j = 1, 
2, ..., N, from the system of equations defining the 
normalized structure factors EH yields a system of 
identities that the En's must satisfy, provided that 
the set of EH's is sufficiently large. Clearly, for fixed 
N and specified space group, this system of identities 
depends only on the set {H}, consisting of n 
reciprocal-lattice vectors H, and is independent of 
the crystal structure, which is assumed for simplicity 
to consist of N identical atoms per unit cell. How- 
ever, for a fixed crystal structure, the magnitudes 
[En] are uniquely determined so that a system of 
identities is obtained among the corresponding 
phases ~OH alone, which depends on the presumed 
known magnitudes ]EHI and which must of necessity 
be satisfied. The known conditional probability dis- 
tributions of triplets and quartets, given the values of 
certain magnitudes [E I, lead to a function R(~o) of 
phases, uniquely determined by magnitudes ]El and 
having the property that Rr < ~ < RR, where Rv is 
the value of R(~o) when the phases are equal to their 
true values, no matter what the choice of origin and 
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enantiomorph, and RR is the value of R(q~) when the 
phases are chosen at random. The following conjec- 
ture is therefore plausible: the global minimum of 
R(q~), where the phases are constrained to satisfy all 
identities among them that are known to exist, is 
attained when the phases are equal to their true 
values and is thus equal to Rr. This 'minimal prin- 
ciple' replaces the problem of phase determination 
by that of finding the global minimum of the func- 
tion R(q~) constrained by the identities that the 
phases must satisfy and suggests strategies for 
determining the values of the phases in terms of N 
and the known magnitudes IEI. Equivalently, the 
minimal principle leads to the solution of the (in 
general redundant) system of equations satisfied by 
the phases ~'n. 

Introduction 

The structure invariants, in this paper only triplets 
and quartets, link the observed magnitudes ]E~ with 
the desired phases ~ of the normalized structure 
factors E. The traditional techniques of direct 
methods use the conditional probability distributions 
of the structure invariants to obtain estimates of 
their values and thus relationships among the indivi- 
dual phases having probabilistic validity. These rela- 
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tionships, together with the ubiquitous tangent 
formula, in one version or another, constitute the 
essential core of most direct-methods programs. If 
data are available to atomic resolution, these 
methods work well for structures having up to some 
150 non-H atoms per asymmetric unit but are not 
routinely applicable to structures of much greater 
complexity, because the required estimates of the 
structure invariants are not sufficiently reliable for 
such large structures. Our goal is to describe stra- 
tegies, based on the minimal principle, that show 
promise in strengthening the traditional direct- 
methods techniques, in particular for larger struc- 
tures. 

In the present work, the structure invariants, speci- 
fically the triplets and negative quartets, again play 
the central role; however, instead of placing major 
emphasis on estimates of their values, the weak link 
in traditional techniques, we employ the conditional 
probability distributions themselves, which are 
known even for very large structures. Strictly speak- 
ing, of course, it must be assumed that the structure 
consists of N identical atoms, uniformly and 
independently distributed in the unit cell, for the 
distributions to be valid. To the extent that this 
condition is violated, the phases obtained by the 
method described here will be subject to errors in 
addition to those caused by errors in the observed 
intensities. 

The algebraic background 

Identities among the phases 

The normalized structure factors are defined by 
N 

EH=IEHlexp(iq~H) = N-I/2 X exp(2,n-iH'rj), (1) 
.j= | 

where H is an arbitrary reciprocal-lattice vector, N is 
the number of atoms in the unit cell, which for 
simplicity are here assumed to be identical, and rj is 
the position vector of the atom labeled j. It should 
perhaps be emphasized that, by basing our analysis 
on the system of equations (1), we capture both the 
atomicity and non-negativity properties of the 
electron-density function in the crystal. Clearly, if the 
system of equations (1) is sufficiently large and the 
set {H}, consisting of n reciprocal-lattice vectors, is 
specified, elimination of the atomic position vectors 
rj yields a system of identities among the E's, i.e. the 
magnitudes ]El and phases ~,, which depends only on 
N and on the space group - assumed to be fixed - 
and is independent of the crystal structure: 

F(IE.I; CH) -- O. (2)  

If the magnitudes IEI are known, these identities in 
turn lead to identities among only the phases ~,, 

dependent on the presumed known magnitudes IE], 
which must of necessity be satisfied: 

G(q~nI,EHI) - 0. (3) 

It is to be emphasized that the system of equations 
(2), each a function of the 2n variables [Enl and ~0., 
is, for fixed N and fixed space group, independent of 
the crystal structure. In sharp contrast, the system of 
equations (3), each a function of the n variables ~0n, 
depends also on the magnitudes [Enl, presumed to be 
known, and depends therefore on the crystal struc- 
ture. If n is sufficiently large, then the system (3) is 
clearly redundant. For example, in the space group 
P1 let n > 3 ( N -  1) and recall that one atomic posi- 
tion vector may be arbitrarily specified, thus fixing 
the origin. Then, by eliminating the remaining N -  1 
atomic position vectors and equating real and 
imaginary parts of each equation in (2), one obtains 
the 2 n -  3 ( N - 1 )  equations of the system (2) and, 
likewise, the 2 n -  3 ( N - 1 )  equations of the system 
(3) in the n unknown phases ~'n. Since n > 3 ( N -  1), 
2 n -  3 ( N -  1)> n so that the system (3) consists of 
more equations than unknowns ~oH. In short, the 
system (3), presumed to be independent, is redun- 
dant. Our major goal is to devise numerical 
algorithms that will solve the redundant system of 
equations (3) for the unknown phases ~on and, to this 
end, the minimal principle plays the central role. It is 
to be emphasized that all we have done thus far is to 
show the existence of the system (3); the explicit 
functional forms of the left-hand sides, presumably 
polynomials in the cosine invariants with coefficients 
that are themselves polynomials in the magnitudes 
]Enl, have not been found [with the minor exceptions 
of N = 1, 2, 3 in the space group P1 (unpublished 
work)] and are in fact not needed. 

The structure invariants 

The most important classes of structure invariants 
are the three-phase structure invariants (triplets), 

~onK = Cn + q~K + q~- n -  K, (4) 

and the four-phase structure invariants (quartets), 

~)LMN = ~ L  -~ @M + ~ N  "~- ~ ) -  L - M -  N" (5 )  

The probabUistic background 

It is assumed that the position vectors r/are random 
variables that are uniformly and independently dis- 
tributed. Then, the structure invariants, as functions 
of random variables via (1), (4) and (5), are them- 
selves random variables and their conditional prob- 
ability distributions, with certain magnitudes [E I 
assumed known, may then be found. 
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The conditional probabil i ty  distribution o f  the triplet 

For fixed reciprocal-lattice vectors H and K, the 
conditional probability distribution of the triplet ~OnK 
[(4)], with the three magnitudes 

IEH[, lEvi, IEH+K[ (6) 

assumed known, is known to be (Cochran, 1955) 

P(q~AHK) = [2rlo(AHK)]-1exp(AHKCOS q~), (7) 

where 

A H K  "-- 2N-I/2IEHEKEH+K I (8) 

and Io is the modified Bessel function. From (7), it 
follows that the mode of q~HK is zero, the conditional 
expectation value of cos q~HK, given AHK, is 

6(COS ~0HK[AHK) = [II(AHK)/Io(AHK)] > 0 (9) 

and the conditional variance of cos ~0HK, given AHK, 
is 

var (cos q~HKIAHK) 

= e(COS 2 q)HKIAHK) -- [e(COS ~0HKIAHK)] 2 

= ~ + ~[I2(AHK)/Io(AHK)] -- [I~(AHK)/I~(AHK)] , (10) 

i.e. 

where 

var (cos ~pHgIAHK) = ~ + ~thK -- t2K, (1 1) 

/IlK = II(AHK)/Io(AHK) = E(COS q)HKIAHK) (12) 

and 

t'HK = I2(AHK)/h)(AHK) = e(COS 2q~HKIAHK). (13) 

It is to be stressed that the conditional expected 
value of the cosine, (9), is always positive, since 
AHK > 0. 

The quartet 

For fixed reciprocal-lattice vectors L, M and N, 
with the seven magnitudes 

lEd, IEMI, IENI, [EL+M+NI, 
[EL+MI, IEM+NI, IEN+L[ (14) 

assumed known, the conditional probability distribu- 
tion of the quartet qgLM N [(5)] is now known 
(Hauptman, 1975). For our purpose, since N is 
presumed to be large, it will be sufficient to use the 
approximation (Giacovazzo, 1976) 

P((DIBLMN) : [27rI0(BI.MN)]- 'exp (BLM N COS (D), 
(15) 

where 

BLMN = (2/N)IELEMENEL + M + NI[(IEL + MI z 

+ ]EM +N] z + IEN+ El z) -- 2 3. (16) 

As in (9) and (10), we now find 

E(COS qbLMNIBLMN)= II(BLMN)/Io(BLMN) (17) 

and 

var (cos q~MNIBLMN)= ~ + ~[I2(BLMN)/Io(BLMN)] 

- -  [I~(BLMN)/I~(BLMN)]. (18) 

In sharp contrast to (9), the conditional expected 
value of the cosine [(17)] is now positive or negative 
according to 

BLMN ~ 0, (19) 

i.e., in view of (16), corresponding to the three 'cross 
terms' ]E L + M], ]EM + NI and ]EN + L[ being mostly large 
or mostly small, respectively. Those quartets for 
which BLMN < 0 are known as negative quartets 
because their cosines are probably negative. The 
special importance of the negative quartets will be 
emphasized subsequently. It is to be stressed that it 
is only the expected values of the cosines of the 
negative quartets that are negative; not all cosines of 
negative quartets are necessarily negative. 

The minimal principle 

The heuristic background 

The mode of the distribution [(7)] is zero and the 
variance of the cosine [(11)] is small if AHK [(8)] is 
large. In this way, one obtains the estimate for the 
triplet q~HK [(4)]: 

q~HK = q~H + ~'K + q~- H-K = 0, (20) 

which is particularly good in the favorable case that 
AHK [(8)] is large, i.e. that ]EHI, IEK] and ]EH+ K] are 
all large. The estimate given by (20) is one of the 
cornerstones of current techniques of direct methods. 
It is surprising how useful (20) has proven to be in 
applications, especially since it yields only the zero 
estimate of the triplet and only those estimates for 
which ]EHI, [EK] and ]EH + K] are all large are reliable. 
Clearly, the coefficient 2N-~2 in (8), and therefore 
AHK as well, decreases with increasing N, i.e. with 
increasing structural complexity. Hence, the rela- 
tionship given by (20) becomes increasingly unrelia- 
ble for larger structures and the traditional 
direct-methods procedures dependent on (20) even- 
tually fail. However, more recent developments in 
direct methods, for example those which make expli- 
cit use of the Sayre (1952) equation, have largely 
overcome this limitation of the older techniques and 
have proved to be more effective in applications 
(Debaerdemaeker, Tate & Woolfson, 1985, 1988; 
Woolfson & Yao, 1988, 1990). 

By their heavy dependence on the triplet rela- 
tionship [(20)] (as well as the analogous negative 
quartet relationship), traditional direct-methods 
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techniques do not fully exploit our detailed knowl- 
edge of the triplet and quartet distributions [(7) and 
(15)]. We propose now to determine the values of the 
phases q~ in such a way that they generate triplets 
and quartets which, for each fixed value of AHK or 
BLMN, have distributions that agree with their theo- 
retical distributions, (7) or (15), respectively. More 
specifically, one determines the value of a set of 
phases as those that generate triplets ~0HK and quar- 
tets (PLMN whose cosines have, for each fixed value of 
AuK and BLMN, conditional expectation values and 
variances in agreement with their theoretical values 
as given by (9), (10), (17) and (18). In connection 
with this, it should be noted that, for a sufficiently 
large basis set of phases, say more than 300 phases in 
the base, the number of structure invariants gener- 
ated by them exceeds by far (two or three orders of 
magnitude at least) the number of unknown phases 
~o. Owing to this great redundancy, a large number 
of identities among the structure invariants, equal to 
the difference between the number of structure 
invariants and the number of phases, must be satis- 
fied. An important aspect of our present formulation 
is that all identities among the structure invariants, 
supplemented by the identities (3) among the phases, 
which must of necessity also hold, will in fact be 
satisfied. 

Triplets 
In view of (9) and the previous discussion, one 

now replaces the zero estimate (20) of the triplet ~0HK 
[(4)] by the estimate 

cos ~0UK = lj(Arm)/lo(AuK) = tHK (21) 

and expects that the smaller the variance [(10)] is, the 
more reliable the estimate [(21)] will be. If one 
defines the weight WnK by 

WHK = AUK, (22) 

then WHK is positively correlated with the reciprocal 
of the variance (10). One is thus led to construct the 
function 

R(q~)= ~" Wfi~ ~ WuK(COS~OHK--tHK) 2, (23) 
H,K H,K 

which is seen to be a function of all those triplets 
q~HK that are generated by a prescribed set of phases 
{~o}. Recall that, if the basis set of phases {~o} is 
sufficiently large, then there are many more structure 
invariants ~0HK than individual phases ~o. Thus, in 
addition to the identities that the individual phases 
must satisfy, a myriad of identities among the struc- 
ture invariants must, of necessity, also be satisfied. It 
is therefore natural to suppose that the best set of 
values for the structure invariants ~0uK is that which 
minimizes the residual R, (23), subject to the con- 
straint that all identities among the structure 
invariants are in fact satisfied. 

Since the triplets ~0HK are defined by (4) as func- 
tions of the individual phases ~0, (23) defines R(q~) 
implicitly as a function of the individual phases. One 
therefore naturally anticipates that the best set of 
values for the individual phases is that which mini- 
mizes the residual R(~0), (23), now regarded as a 
function of the individual phases ~o provide.d, as 
always, that the phases themselves satisfy the 
required identities [(3)]. The advantage of this for- 
mulation is that all identities among the structure 
invariants will then automatically be satisfied and it 
is unnecessary to define in further detail what the 
nature of these identities must be. It remains only to 
derive the conditions under which this formulation 
of the so-called minimal principle is valid. 

The minimal principle for triplets (Hauptman, 1988, 
1989, 1991; Hauptman, Velmurugen & Hart, 1990; 
Hauptman & Hart, 1993; DeTitta, Weeks, Thuman, 
Miller & Hauptman, 1991; Miller et al., 1993; Weeks, 
DeTitta, Thuman, Miller & Hauptman, 1992; Weeks, 
DeTitta, Hauptman, Thuman & Miller, 1994; Weeks, 
DeTitta, Miller & Hauptman, 1993) 

From (23), one finds 

R(~o) = WnK E WnK(~ + ~ cos 2q~nK 
H,K 

- 2tnK COS ~onK + t~K). (24) 

One first restricts the summations in (24) to those 
reciprocal-lattice vectors H, K for which AuK, from 
(8), has a fixed specified value. WnK, from (22), is 
also fixed under this restricted summation. The 
expected values tHK of COS ~OHK, from (12), and th~ of 
cos 2~0nK, from (13), as functions of AuK, are then 
also fixed. Two cases are distinguished. In the first 
case, the phases are assumed to be equal to their true 
values for some choice of origin and enantiomorph. 
Then, in view of (12) and (13), R, from (24), becomes 
(since I , t .K < t,~,K) 

Rr = ~ + ~ thK - t~K < ~, (25) 

where tnK and thK are given by (12) and (13), 
respectively. In the second case, the values of the 
phases are chosen at random, so that 

(cos ~OnK)n.K = (COS 2~OnK)n.K = 0. (26) 

Now, (24) reduces to 

RR = ~ + t~K > ~. (27) 

In view of (25) and (27), 

Rr < ~ < RR. (28) 

Hence, the residual R(~o), equal to Rr when the 
phases take on their true values, is in fact less than 
the residual R(q~), equal to RR when the phases are 
chosen at random, as anticipated by the heuristic 
argument presented earlier. 
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It remains only to drop the restriction on the 
double sums in (24) that requires AHK to be constant 
over the course of the summation. Again, denoting 
by Rr the residual R(~o) when the phases are equal to 
their true values and by RR the residual R(~o) when 
the phases are chosen at random, one now obtains, 
with (25) and (27), 

( )' Rr = ~ + X WHK Z WHK(~thK--t~K)<~ (29) 
H,K H,K 

and 

( ) RR= ~ + • W.K Z WHKtZHK > 4 ( 3 0 )  
H,K H.K 

so that once again the inequalities 

Rr < ~_ < RR (28a) 

hold, where the summations in (24) are now 
unrestricted. It should be emphasized that (29) and 
(30) give explicit formulas for calculating Rr and RR 
in terms of the observed magnitudes of the 
normalized structure factors IE] and do not require 
prior knowledge of the phases, in contrast to (24). 

It has to be observed finally that, if the phases are 
not constrained, then the two cases considered so far 
are not exhaustive since (26) may fail to hold, for 
example, not only when the phases take on their true 
values but also in the singular case that every phase 
is equal to + ~0 or - q~ for some fixed value of q~. In 
these singular cases, every triplet q~HK reduces simply 
to 

~oHx = -+ ~o o r  ~0HK = - 3~0 ( 3 1 )  

so that, in general, 

(cos ~OHK)H,K ~ 0 and (cosZ~pnK)H.K ~ 0 (32) 

since ~o is fixed over the averaging process and (26), 
on which the derivation of RR is based, fails to hold. 
There remains open the possibility then that there 
exist one or more values of ~o, that is singular points, 
leading to residuals R(q~) that are less than Rr. 
Detailed calculations show that this possibility is in 
fact realized, so that despite the fact that Rr < RR, 
Rr is not the (unconstrained) global minimum of 
(23). This observation makes clear the need to force 
the phases to satisfy the required identities (3). 

If one is to determine phases directly by this 
approach, it is desirable to modify the formalism 
described here so as to include the quartets. It is 
anticipated that the positive quartets will not be as 
useful in this respect since triplets and positive quar- 
tets are strongly correlated. It is expected that the 
negative quartets, on the other hand, will provide the 
kind of supplemental information that will prove to 
be useful, since they are strongly dependent on the 
weak reflections, the very ones that the triplets avoid. 
This expectation is confirmed subsequently. Never- 

theless, the positive quartets may still have a role to 
play and they are readily incorporated into the for- 
malism if desired. 

The minimal principle .for negative quartets 

In complete analogy with the previous discussion 
of triplets and with reference to (5) for the definition 
of the quartet CLMN, to (16) for the definition of 
BLMN, and to (17) and (18), one now defines tLM N 
and tLMN by 

tLMN = II(BLMN)/Io(BLMN) 

= E(COS ~0LMN[BLMN) (33) 

tLMN = 12(BLMN)/I0(BLMN) 

= e(COS 2qh.MN[BLMN). (34) 

Then, from (18), 

var(cos ~LM~IBLMN) = ~ + ~tLMN -- t~MN. (35) 

Now, the weight WLMN is defined by 

WLMN = IBLMNI, (36) 

which is seen to be positively correlated with the 
reciprocal of the variance (35). As before, in the 
derivation of (23), one is now led to construct the 
residual 

R(~o)= 2 WLMN 2 WLM~ 
L,M,N L,M,N 

x (cos ~0LMN -- tLMN) 2, (37) 

a function of all negative quartets ~'LMN, i.e. those 
for which BLMN, from (16), satisfies the inequality 

BLM N < 0 (38) 

and which are generated by a prescribed set of 
phases {~o}. It should be stressed that phases eL, ~'M, 
~ON and ~0-L-M-N, belonging to the basis set of 
phases, generally correspond to the most intense 
reflections, but the phases ~L + M, ~0M + N and ~0 N + L, 
associated with the relatively weak magnitudes 
IEL+MI, IEM+NI and !EN+LI, the 'cross terms' of the 
quartet, in general do not belong to the basis set of 
phases. As before, R(q~) may be regarded as a func- 
tion of phases alone. In analogy with the derivation 
of (29) and (30), one now finds 

X Z WLMN( / tLMN -- t2LMN) < ~ (39 )  
L,M,N 

and 

RR 

x 2 WLMNt[MN>~', 
L,M,N 

(40) 
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where Rr is the value of R(~o) in (37) (now regarded 
as a function of phases) when the phases take on 
their true values for some choice of origin and 
enantiomorph and RR is the value of R(~o) when the 
phases are chosen at random. Hence, as before, in 
(28a), 

Rr < ~ < RR. (41) 

As before, Rr, the value of R(q~) in (37) when every 
phase is equal to its true value, is the constrained 
global minimum of (37). 

The minimal principle combining triplets and negative 
quartets 

By combining (23) and (37), one is led to the 
definition of the so-called minimal function: 

R(~) = [ -.~Y W.~(cos ~ . ~ -  t.~) 2 

"~ L,M,NZ WLMN(COS ~0LMN -- tLMN) 2 ] 

(£ )-' × WnK+ ~ WLMN , (42) 
L,M,N 

where the double sum is taken over all reciprocal- 
lattice vectors H, K associated with triplets ~oH~: that 
are generated by a specified basis set of phases {~0} 
corresponding to the largest value of IE[ and the 
triple sum is taken over all reciprocal-lattice vectors 
L, M, N corresponding to the negative quartets 
q~LMN generated by the basis set of phases {q~}. It has 
already been pointed out that Ar~K and ]BLMN[ are 
positively correlated with the reciprocals of the vari- 
ances of the corresponding conditional distributions 
(7) and (15). It is for this reason that one defines the 
weights Wm¢ and WLM N by (22) and (36), respec- 
tively, and in this way employs the known variances 
of (7) and (15). Then, provided that the basis set of 
phases {~0} is chosen to be sufficiently large, the 
minimal function R(~o) has a constrained global 
minimum at the point that all the phases are equal to 
their true values for some choice of origin and 
enantiomorph (the minimal principle). In this way, 
the problem of phase determination is replaced by 
the problem of finding the constrained global mini- 
mum of the minimal function R(~o), from (42), a 
known function of the phases. Since the system of 
equations (3) is redundant, constraining the phases 
to satisfy these identities is tantamount to fixing their 
values to be equal to their true values for some 
choice of origin and enantiomorph. Thus, the mini- 
mal principle must be understood to mean that any 
values for the phases that lead to a value of the 
minimal function less than Rr, the constrained global 

minimum, cannot satisfy the system (3) and hence 
must differ from the true values of the phases. 

Finally, as in the derivations of (29), (39), (30) and 
(40), one now finds for the minimal function (42) the 
constrained global minimum 

( ) R T -- ~ .4- ~ WHK -F 2 WLMN 
H,K L,M,N 

x [ Z w.~(~ thK- thK) 
[_ H,K 

+ ~ l ,  _ [ WLMN(2tLMN t~MN) < ~  (43) 
L,M,N J 

and for RR )-' 
RR=~+  Wm¢+ Z WLMN 

L,M,N 

2 ] k. x Y~ w.,,t~,,,+ Z WLMNt,.MN > (44) 
H,K L,M,N 

It is to be stressed again that Rr and Rm as given by 
(43) and (44), depend only on known magnitudes IEI 
and do not require prior knowledge of the phases q~. 

Concluding comments and implementation 

Qualifications 

A number of qualifications of the preceding argu- 
ments need to be made. The first is that, strictly 
speaking, 'elimination' of the atomic position vectors 
from the set of equations (1) is only possible when 
the equations themselves are relevant, i.e. a set of 
ideal normalized structure-factor magnitudes IEhl is 
available to infinite precision for an equal-atom non- 
vibrating point-scattering structure. Therefore, (3) 
must be clearly understood, in the context of real 
structures and real data, to be equations of loose 
constraint, so the equal signs of those equations 
should be replaced by 'approximately' equal signs. 
The second is that, even for ideal structures and ideal 
data, the equations of constraint (3) apply only at 
that point in many-dimensional space where the 
unique unknown phases ~on assume their true values. 
An argument based on the continuity of the 
exponential function in (1) makes plausible the con- 
jecture that (3) are pretty well satisfied when the n 
unknown phases ~0n are close to their true values, 
but at present we attempt no rigorous proof of the 
assertion nor, more importantly, can we speculate on 
the quantitative breakdown of (3) as the phases 
move away from their true values. The third is that 
nothing in the calculation of Rmin acts to constrain 
the phases according to the equations of constraint. 
In addition to the singular points where all phases 
take on a special value, there are values of the 
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phases, notably values close to their true values, but 
unconstrained by the system (3), that minimize Rmi n 
but, on the basis of comparison with the true values, 
have larger average phase errors. The fourth is that 
the minimization of the weighted mean-square 
differences between the 1Jlo estimates of the means 
of the invariant distributions and the calculated 
values based on a model force the calculated values 
towards the means - and not necessarily towards the 
distribution themselves. Finally, we need to appreci- 
ate clearly that the mere existence of the equations of 
constraint (3) does not suggest ways to impose the 
constraints. Nothing in the minimization of Rmin 
does so. Nonetheless, the conceptual framework sug- 
gested by (3) permits us to propose an approximate 
scheme for the imposition of these constraints and 
thereby leads us to a practical direct method of 
structure determination. 

The nature of the constraints and the underlying 
dimensionality of the phase problem 

A traditional formulation of direct methods 
might be something like this: for an N-atom struc- 
ture, we try to secure the values for - 1 0 N  phases 
(invariably those for the - 1 0 N  largest [Eh[ mag- 
nitudes); we do so, via the tangent formula, by em- 
ploying - 3 0 0 N  three-phase structure invariants 
assuming they all have cos(~on + ~0K + ~0L) values 
close to + 1. By the preceding arguments, we have 
greatly overdetermined the structure, there being 3N 
unknown positional parameters in three-space. We 
cast the minimal function originally in terms of 
invariants R{q~} involving no constraints at all. If we 
recast it in terms of phases R{tb}, we automatically 
impose all the constraints among the structure 
invariants themselves (Fortier, DeTitta, Froncko- 
wiak, Smith & Hauptman, 1979). These identity 
relationships among the structure invariants must 
hold exactly, no matter what the values of the 
phases, and hence have little phasing power; how- 
ever, by recasting the process we have reduced the 
space of the minimization from - 3 0 0 N  to - 1 0 N  
dimensions. 

Of course, we could attempt to reduce the dimen- 
sionality of the problem to its minimum number and 
recast the minimal function yet again in terms of the 
3N positional parameters R{F}, but there would be a 
penalty to pay. Unlike R{q~}, which involves the 
phases ~OH in equations of the type [t ~ cos(q~H + ~0K 
+ ~0L)] 2, where the q;s have integer coefficients (+_ 1) 
(Han, DeTitta & Hauptman, 1991), R{F} involves 
the unknowns in equations like the structure-factor 
equations: transcendental, with the x,y,z's multiplied 
by h,k,l's and raised to an exponential power. We 
may as well tackle the phase problem head-on and 
resort to trial and error, where the function mini- 
mized would be the standard crystallographic R 

factor. Can we retain the calculability of R{~o} yet 
retain the more robust constraints of R{F}? 

We can proceed as follows. Allow the minimal 
function to retain its computationally convenient 
phase form R{~0}. Permit a set of phases {~oh} to 
adjust somewhat to a new set of phases {~0'} in order 
that R{~0'} < R{~o}. Now 'close to' {~0'} is yet a third 
set of phases {~0'co,}, a set that respects, as much as 
possible, the equations of constraint (3). We suggest 
that {~O'co,} can be derived from {~0'} by a density- 
modification procedure. Take the adjusted phases 
{~o'} that reduce the value of the minimal function 
and the observed magnitudes [Eh[, calculate a Fourier 
map, select from the map the N maxima we hope will 
eventually become atomic positions and calculate 
phases {~O'co,} via structure factors. What justifies the 
conjecture that the {q~'con} are in any sense 'con- 
strained'? We argue that the {~O'co,} are at least more 
likely to obey the equations of constraint simply 
because they result from the model of the crystal 
structure that underlies the whole probabilistic devel- 
opment - they are derived from a point-scatterer 
non-vibrating N-atom structural model. 

We suggest that a plausible scheme for structure 
determination relies equally on the two pillars of 
minimization of R{~o} in phase space and re- 
imposition of constraints in real space. If computing 
were no problem, we could postulate a starting 
model {F}, calculate phases {~Oco,}, minimize R{~o} by 
infinitesimally adjusting the {~P¢on} to {~0'}, carry out 
the Fourier inversion and map interpretation to 
secure {F'}, which is infinitesimally different from 
{F}, calculate, via structure factors, {~P'¢,,n} and iterate 
to convergence. We do not mean to imply that such 
a minimization itself is a trivial exercise; it is prob- 
ably beset by the 'local-minimum' problem common 
to many-dimensional minimization problems that are 
far from linear in nature. Nonetheless, the prescrip- 
tion yields a set of phases {~O'con} that are 'atomic' 
and that yield approximately 'non-negative' electron- 
density maps at each step of the minimization. 

As a practical matter, we in fact allow phases to 
adjust much more than infinitesimally before we 
re-impose the constraints via Fourier inversion, map 
interpretation and Fourier back-inversion. Still, we 
restrict the phase excursions enough for an approxi- 
mate relationship between {q~'} and {q~'~o,} to be 
maintained. To fail to do so would be tantamount to 
generating random phase sets and we present some 
evidence in an accompanying article (Weeks, 
DeTitta, Hauptman, Thuman & Miller, 1994) that 
argues against such an approach. 

Applications 

The procedures we have described have been 
implemented in a number of ways for a number of 
computer architectures, both serial and parallel. In 
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order to gather statistics that are in any way mean- 
ingful, we have largely, but not exclusively, restricted 
our attention to known, albeit real, crystal struc- 
tures. [See the accompanying paper by Weeks et al. 
(1994).] A few concluding remarks are in order. 

The implementations have been of the multiso- 
lution variety, each starting point being defined by a 
new random structure. Currently, we are searching 
over hundreds or thousands of starting points and 
each starting point has been subjected to tens or 
hundreds of cycles: {structure factor, R minimi- 
zation, Fourier transformation, map interpretation, 
...}. Clearly, to make the process more computatio- 
nally bearable, we need to focus our attention on 
three areas. Can we identify promising starting struc- 
tures prior to entering the process? Can we speed up 
the process itself by employing different minimizing 
procedures? Can we develop similar but more robust 
functions of the phases that widen the already very 
wide radius of convergence of the procedures? 
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Abstract 
The minimal function, R(~), has been used to 
provide the basis for a new computer-intensive 
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direct-methods procedure that shows potential for 
providing fully automatic routine solutions for struc- 
tures in the 200--400 atom range. This procedure, 
which has been called shake-and-bake, is an iterative 
process in which real-space filtering is alternated with 
phase refinement using a technique that reduces the 
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